Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Mol Biol Rep ; 51(1): 480, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578387

RESUMO

Fragile X syndrome (FXS) is a genetic disorder characterized by mutation in the FMR1 gene, leading to the absence or reduced levels of fragile X Messenger Ribonucleoprotein 1 (FMRP). This results in neurodevelopmental deficits, including autistic spectrum conditions. On the other hand, Fragile X-associated tremor/ataxia syndrome (FXTAS) is a distinct disorder caused by the premutation in the FMR1 gene. FXTAS is associated with elevated levels of FMR1 mRNA, leading to neurodegenerative manifestations such as tremors and ataxia.Mounting evidence suggests a link between both syndromes and mitochondrial dysfunction (MDF). In this minireview, we critically examine the intricate relationship between FXS, FXTAS, and MDF, focusing on potential therapeutic avenues to counteract or mitigate their adverse effects. Specifically, we explore the role of mitochondrial cofactors and antioxidants, with a particular emphasis on alpha-lipoic acid (ALA), carnitine (CARN) and Coenzyme Q10 (CoQ10). Findings from this review will contribute to a deeper understanding of these disorders and foster novel therapeutic strategies to enhance patient outcomes.


Assuntos
Síndrome do Cromossomo X Frágil , Doenças Mitocondriais , Humanos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Tremor/tratamento farmacológico , Tremor/genética , Antioxidantes/uso terapêutico , Ataxia/tratamento farmacológico , Ataxia/genética , Proteína do X Frágil de Retardo Mental/genética
2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339019

RESUMO

The advent of immune checkpoint inhibitors (ICIs) has represented a breakthrough in the treatment of many cancers, although a high number of patients fail to respond to ICIs, which is partially due to the ability of tumor cells to evade immune system surveillance. Non-coding microRNAs (miRNAs) have been shown to modulate the immune evasion of tumor cells, and there is thus growing interest in elucidating whether these miRNAs could be targetable or proposed as novel biomarkers for prognosis and treatment response to ICIs. We therefore performed an extensive literature analysis to evaluate the clinical utility of miRNAs with a confirmed direct relationship with treatment response to ICIs. As a result of this systematic review, we have stratified the miRNA landscape into (i) miRNAs whose levels directly modulate response to ICIs, (ii) miRNAs whose expression is modulated by ICIs, and (iii) miRNAs that directly elicit toxic effects or participate in immune-related adverse events (irAEs) caused by ICIs.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Evasão da Resposta Imune , Vigilância Imunológica , Neoplasias/tratamento farmacológico , Neoplasias/genética
4.
Free Radic Biol Med ; 213: 123-137, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38199289

RESUMO

Physical exercise is established as an important factor of health and generally is recommended for its positive effects on several tissues, organs, and systems. These positive effects come from metabolic adaptations that also include oxidative eustress, in which physical activity increases ROS production and antioxidant mechanisms, although this depends on the intensity of the exercise. Muscle metabolism through mechanisms such as aerobic and anaerobic glycolysis, tricarboxylic acid cycle, and oxidative lipid metabolism can produce metabolites and co-factors which directly impact the epigenetic machinery. In this review, we clearly reinforce the evidence that exercise regulates several epigenetic mechanisms and explain how these mechanisms can be regulated by metabolic products and co-factors produced during exercise. In fact, recent evidence has demonstrated the importance of epigenetics in the gene expression changes implicated in metabolic adaptation after exercise. Importantly, intermediates of the metabolism generated by continuous, acute, moderate, or strenuous exercise control the activity of epigenetic enzymes, therefore turning on or turning off the gene expression of specific programs which can lead to physiological adaptations after exercise.


Assuntos
Exercício Físico , Estresse Oxidativo , Estresse Oxidativo/fisiologia , Exercício Físico/fisiologia , Antioxidantes/metabolismo , Oxirredução , Adaptação Fisiológica/genética , Epigênese Genética , Músculo Esquelético/metabolismo
6.
Redox Biol ; 66: 102862, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37660443

RESUMO

The retina is particularly vulnerable to genetic and environmental alterations that generate oxidative stress and cause cellular damage in photoreceptors and other retinal neurons, eventually leading to cell death. CERKL (CERamide Kinase-Like) mutations cause Retinitis Pigmentosa and Cone-Rod Dystrophy in humans, two disorders characterized by photoreceptor degeneration and progressive vision loss. CERKL is a resilience gene against oxidative stress, and its overexpression protects cells from oxidative stress-induced apoptosis. Besides, CERKL contributes to stress granule-formation and regulates mitochondrial dynamics in the retina. Using the CerklKD/KO albino mouse model, which recapitulates the human disease, we aimed to study the impact of Cerkl knockdown on stress response and activation of photoreceptor death mechanisms upon light/oxidative stress. After acute light injury, we assessed immediate or late retinal stress response, by combining both omic and non-omic approaches. Our results show that Cerkl knockdown increases ROS levels and causes a basal exacerbated stress state in the retina, through alterations in glutathione metabolism and stress granule production, overall compromising an adequate response to additional oxidative damage. As a consequence, several cell death mechanisms are triggered in CerklKD/KO retinas after acute light stress. Our studies indicate that Cerkl gene is a pivotal player in regulating light-challenged retinal homeostasis and shed light on how mutations in CERKL lead to blindness by dysregulation of the basal oxidative stress response in the retina.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool) , Degeneração Retiniana , Retinite Pigmentosa , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Homeostase , Estresse Oxidativo , Retina , Degeneração Retiniana/genética , Retinite Pigmentosa/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética
7.
Redox Biol ; 64: 102801, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37418888

RESUMO

The high recurrence rate of cystine lithiasis observed in cystinuria patients highlights the need for new therapeutic options to address this chronic disease. There is growing evidence of an antioxidant defect in cystinuria, which has led to test antioxidant molecules as new therapeutic approaches. In this study, the antioxidant l-Ergothioneine was evaluated, at two different doses, as a preventive and long-term treatment for cystinuria in the Slc7a9-/- mouse model. l-Ergothioneine treatments decreased the rate of stone formation by more than 60% and delayed its onset in those mice that still developed calculi. Although there were no differences in metabolic parameters or urinary cystine concentration between control and treated mice, cystine solubility was increased by 50% in the urines of treated mice. We also demonstrate that l-Ergothioneine needs to be internalized by its transporter OCTN1 (Slc22a4) to be effective, as when administrated to the double mutant Slc7a9-/-Slc22a4-/- mouse model, no effect on the lithiasis phenotype was observed. In kidneys, we detected a decrease in GSH levels and an impairment of maximal mitochondrial respiratory capacity in cystinuric mice that l-Ergothioneine treatment was able to restore. Thus, l-Ergothioneine administration prevented cystine lithiasis in the Slc7a9-/- mouse model by increasing urinary cystine solubility and recovered renal GSH metabolism and mitochondrial function. These results support the need for clinical trials to test l-Ergothioneine as a new treatment for cystinuria.


Assuntos
Cistinúria , Ergotioneína , Litíase , Animais , Camundongos , Ergotioneína/farmacologia , Litíase/prevenção & controle , Cistinúria/tratamento farmacológico , Cistina , Antioxidantes/farmacologia , Camundongos Knockout , Masculino , Feminino , Camundongos Endogâmicos C57BL , Glutationa/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo
8.
J Transl Med ; 21(1): 344, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221624

RESUMO

BACKGROUND: As leading contributors to worldwide morbidity and mortality, sepsis and septic shock are considered a major global health concern. Proactive biomarker identification in patients with sepsis suspicion at any time remains a daunting challenge for hospitals. Despite great progress in the understanding of clinical and molecular aspects of sepsis, its definition, diagnosis, and treatment remain challenging, highlighting a need for new biomarkers with potential to improve critically ill patient management. In this study we validate a quantitative mass spectrometry method to measure circulating histone levels in plasma samples for the diagnosis and prognosis of sepsis and septic shock patients. METHODS: We used the mass spectrometry technique of multiple reaction monitoring to quantify circulating histones H2B and H3 in plasma from a monocenter cohort of critically ill patients admitted to an Intensive Care Unit (ICU) and evaluated its performance for the diagnosis and prognosis of sepsis and septic shock (SS). RESULTS: Our results highlight the potential of our test for early diagnosis of sepsis and SS. H2B levels above 121.40 ng/mL (IQR 446.70) were indicative of SS. The value of blood circulating histones to identify a subset of SS patients in a more severe stage with associated organ failure was also tested, revealing circulating levels of histones H2B above 435.61 ng/ml (IQR 2407.10) and H3 above 300.61 ng/ml (IQR 912.77) in septic shock patients with organ failure requiring invasive organ support therapies. Importantly, we found levels of H2B and H3 above 400.44 ng/mL (IQR 1335.54) and 258.25 (IQR 470.44), respectively in those patients who debut with disseminated intravascular coagulation (DIC). Finally, a receiver operating characteristic curve (ROC curve) demonstrated the prognostic value of circulating histone H3 to predict fatal outcomes and found for histone H3 an area under the curve (AUC) of 0.720 (CI 0.546-0.895) p < 0.016 on a positive test cut-off point at 486.84 ng/mL, showing a sensitivity of 66.7% and specificity of 73.9%. CONCLUSIONS: Circulating histones analyzed by MS can be used to diagnose SS and identify patients at high risk of suffering DIC and fatal outcome.


Assuntos
Sepse , Choque Séptico , Humanos , Histonas , Estado Terminal , Prognóstico , Diagnóstico Precoce , Espectrometria de Massas
9.
J. physiol. biochem ; 79(2)may. 2023. graf, ilus
Artigo em Inglês | IBECS | ID: ibc-222539

RESUMO

Extracellular histones have been reported to aggravate different pathophysiological processes by increasing vascular permeability, coagulopathy, and inflammation. In the present study, we elucidate how extracellular histones (10–100 µg/mL) concentration dependently increase cytosolic reactive oxygen species (ROS) production using human umbilical vein endothelial cells (HUVECs). Furthermore, we identify cyclooxygenase (COX) and NADPH oxidase (NOX) activity as sources of ROS production in extracellular histone-treated HUVEC. This COX/NOX-mediated ROS production is also involved in enhanced NF-kB activity and cell adhesion molecules (VCAM1 and ICAM1) expression in histone-treated HUVEC. Finally, by using different toll-like receptor (TLR) antagonists, we demonstrate the role of TLR4 in CAMs overexpression triggered by extracellular histones in endothelial cells. In conclusion, our data suggest that through TLR4 signaling, extracellular histones increase endothelial cell activation, a mechanism involving increased COX- and NOX-mediated ROS. These findings increase our understanding on how extracellular histones enhance systemic inflammatory responses in diseases in which histone release occurs as part of the pathological processes. (AU)


Assuntos
Humanos , Histonas , NF-kappa B/metabolismo , Moléculas de Adesão Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo
10.
Antioxidants (Basel) ; 12(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37107175

RESUMO

Autoimmune diseases (ADs) such as Sjögren's syndrome, Kawasaki disease, and systemic sclerosis are characterized by chronic inflammation, oxidative stress, and autoantibodies, which cause joint tissue damage, vascular injury, fibrosis, and debilitation. Epigenetics participate in immune cell proliferation and differentiation, which regulates the development and function of the immune system, and ultimately interacts with other tissues. Indeed, overlapping of certain clinical features between ADs indicate that numerous immunologic-related mechanisms may directly participate in the onset and progression of these diseases. Despite the increasing number of studies that have attempted to elucidate the relationship between miRNAs and oxidative stress, autoimmune disorders and oxidative stress, and inflammation and miRNAs, an overall picture of the complex regulation of these three actors in the pathogenesis of ADs has yet to be formed. This review aims to shed light from a critical perspective on the key AD-related mechanisms by explaining the intricate regulatory ROS/miRNA/inflammation axis and the phenotypic features of these rare autoimmune diseases. The inflamma-miRs miR-155 and miR-146, and the redox-sensitive miR miR-223 have relevant roles in the inflammatory response and antioxidant system regulation of these diseases. ADs are characterized by clinical heterogeneity, which impedes early diagnosis and effective personalized treatment. Redox-sensitive miRNAs and inflamma-miRs can help improve personalized medicine in these complex and heterogeneous diseases.

11.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674605

RESUMO

Lafora disease is a rare, fatal form of progressive myoclonus epilepsy characterized by continuous neurodegeneration with epileptic seizures, characterized by the intracellular accumulation of aberrant polyglucosan granules called Lafora bodies. Several works have provided numerous evidence of molecular and cellular alterations in neural tissue from experimental mouse models deficient in either laforin or malin, two proteins related to the disease. Oxidative stress, alterations in proteostasis, and deregulation of inflammatory signals are some of the molecular alterations underlying this condition in both KO animal models. Lafora bodies appear early in the animal's life, but many of the aforementioned molecular aberrant processes and the consequent neurological symptoms ensue only as animals age. Here, using small RNA-seq and quantitative PCR on brain extracts from laforin and malin KO male mice of different ages, we show that two different microRNA species, miR-155 and miR-146a, are overexpressed in an age-dependent manner. We also observed altered expression of putative target genes for each of the microRNAs studied in brain extracts. These results open the path for a detailed dissection of the molecular consequences of laforin and malin deficiency in brain tissue, as well as the potential role of miR-155 and miR-146a as specific biomarkers of disease progression in LD.


Assuntos
Doença de Lafora , MicroRNAs , Camundongos , Masculino , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Doença de Lafora/genética , Doença de Lafora/metabolismo , Doenças Neuroinflamatórias , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Estresse Oxidativo/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
J Physiol Biochem ; 79(2): 251-260, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36464762

RESUMO

Extracellular histones have been reported to aggravate different pathophysiological processes by increasing vascular permeability, coagulopathy, and inflammation. In the present study, we elucidate how extracellular histones (10-100 µg/mL) concentration dependently increase cytosolic reactive oxygen species (ROS) production using human umbilical vein endothelial cells (HUVECs). Furthermore, we identify cyclooxygenase (COX) and NADPH oxidase (NOX) activity as sources of ROS production in extracellular histone-treated HUVEC. This COX/NOX-mediated ROS production is also involved in enhanced NF-kB activity and cell adhesion molecules (VCAM1 and ICAM1) expression in histone-treated HUVEC. Finally, by using different toll-like receptor (TLR) antagonists, we demonstrate the role of TLR4 in CAMs overexpression triggered by extracellular histones in endothelial cells. In conclusion, our data suggest that through TLR4 signaling, extracellular histones increase endothelial cell activation, a mechanism involving increased COX- and NOX-mediated ROS. These findings increase our understanding on how extracellular histones enhance systemic inflammatory responses in diseases in which histone release occurs as part of the pathological processes.


Assuntos
Histonas , NF-kappa B , Humanos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Moléculas de Adesão Celular , Estresse Oxidativo , NADPH Oxidases/metabolismo
13.
Front Immunol ; 14: 1333705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235139

RESUMO

Introduction: Sepsis patients experience a complex interplay of host pro- and anti-inflammatory processes which compromise the clinical outcome. Despite considering the latest clinical and scientific research, our comprehension of the immunosuppressive events in septic episodes remains incomplete. Additionally, a lack of data exists regarding the role of epigenetics in modulating immunosuppression, subsequently impacting patient survival. Methods: To advance the current understanding of the mechanisms underlying immunosuppression, in this study we explored the dynamics of DNA methylation using the Infinium Methylation EPIC v1.0 BeadChip Kit in leukocytes from patients suffering from sepsis, septic shock, and critically ill patients as controls, within the first 24 h after admission in the Intensive Care Unit of a tertiary hospital. Results and discussion: Employing two distinct analysis approaches (DMRcate and mCSEA) in comparing septic shock and critically ill patients, we identified 1,256 differentially methylated regions (DMRs) intricately linked to critical immune system pathways. The examination of the top 100 differentially methylated positions (DMPs) between septic shock and critically ill patients facilitated a clear demarcation among the three patient groups. Notably, the top 6,657 DMPs exhibited associations with organ dysfunction and lactate levels. Among the individual genes displaying significant differential methylation, IL10, TREM1, IL1B, and TNFAIP8 emerged with the most pronounced methylation alterations across the diverse patient groups when subjected to DNA bisulfite pyrosequencing analysis. These findings underscore the dynamic nature of DNA methylation profiles, highlighting the most pronounced alterations in patients with septic shock, and revealing their close association with the disease.


Assuntos
Sepse , Choque Séptico , Humanos , Choque Séptico/genética , Epigenoma , Estado Terminal , Sepse/genética , Sepse/diagnóstico , Fenótipo , Leucócitos , Terapia de Imunossupressão
14.
Orphanet J Rare Dis ; 17(1): 450, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575500

RESUMO

BACKGROUND: Limb-girdle muscular dystrophy (LGMD) is a rare neuromuscular disease including a growing and heterogeneous number of subtypes with variable phenotype. Their clinical and histopathological characteristics frequently overlap with other neuromuscular dystrophies. Our goal was to identify, by a non-invasive method, a molecular signature including biochemical and epigenetic parameters with potential value for patient prognosis and stratification. RESULTS: Circulating miRNome was obtained by smallRNA-seq in plasma from LGMD patients (n = 6) and matched-controls (n = 6). Data, validated by qPCR in LGMD samples, were also examined in other common muscular dystrophies: Duchenne (DMD) (n = 5) and facioscapulohumeral muscular dystrophy (FSHD) (n = 4). Additionally, biochemical and clinical parameters were analyzed. miRNome analysis showed that thirteen differentially expressed miRs could separate LGMD vs control group by hierarchical clustering. Most of differentially expressed miRs in LGMD patients were up-regulated (miR-122-5p, miR-122b-3p, miR-6511a-3p, miR-192-5p, miR-574-3p, mir-885-3p, miR-29a-3p, miR-4646-3p, miR-203a-3p and miR-203b-5p) whilst only three of sequenced miRs were significantly down-regulated (miR-19b-3p, miR-7706, miR-323b-3p) when compared to matched controls. Bioinformatic analysis of target genes revealed cell cycle, muscle tissue development, regeneration and senescence as the most affected pathways. Four of these circulating miRs (miR-122-5p, miR-192-5p, miR-19b-3p and miR-323b-3p), together with the myomiR miR-206, were further analysed by qPCR in LGMD, DMD and FSHD. The receiver operating characteristic curves (ROC) revealed high area under the curve (AUC) values for selected miRs in all groups, indicating that these miRs have good sensitivity and specificity to distinguish LGMD, DMD and FSHD patients from healthy controls. miR-122-5p, miR-192-5p and miR-323-3p were differentially expressed compared to matched-controls in all groups but apparently, each type of muscular dystrophy showed a specific pattern of miR expression. Finally, a strong correlation between miRs and biochemical data was only found in LGMD patients: while miR-192-5p and miR-122-5p negatively correlated with CK, miR-192-5p positively correlated with vitamin D3 and ALP. CONCLUSIONS: Although limited by the small number of patients included in this study, we propose here a specific combination of circulating miR-122-5p/miR-192-5p/miR-323-3 and biochemical parameters as a potential molecular signature whose clinical value for LGMD patient prognosis and stratification should be further confirmed in a larger cohort of patients.


Assuntos
MicroRNAs , Distrofia Muscular do Cíngulo dos Membros , Distrofia Muscular Facioescapuloumeral , Humanos , MicroRNAs/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular Facioescapuloumeral/genética
15.
Cells ; 11(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552833

RESUMO

NETosis is a key host immune process against a pathogenic infection during innate immune activation, consisting of a neutrophil "explosion" and, consequently, NET formation, containing mainly DNA, histones, and other nuclear proteins. During sepsis, an exacerbated immune host response to an infection occurs, activating the innate immunity and NETosis events, which requires histone H3 citrullination. Our group compared the circulating histone levels with those citrullinated H3 levels in plasma samples of septic patients. In addition, we demonstrated that citrullinated histones were less cytotoxic for endothelial cells than histones without this post-translational modification. Citrullinated histones did not affect cell viability and did not activate oxidative stress. Nevertheless, citrullinated histones induced an inflammatory response, as well as regulatory endothelial mechanisms. Furthermore, septic patients showed elevated levels of circulating citrullinated histone H3, indicating that the histone citrullination is produced during the first stages of sepsis, probably due to the NETosis process.


Assuntos
Armadilhas Extracelulares , Sepse , Humanos , Histonas/metabolismo , Citrulinação , Armadilhas Extracelulares/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Sepse/metabolismo , Endotélio/metabolismo
16.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555526

RESUMO

Chronic gut inflammation in Crohn's disease (CD) is associated with an increase in oxidative stress and an imbalance of antioxidant enzymes. We have previously shown that catalase (CAT) activity is permanently inhibited by CD. The purpose of the study was to determine whether there is any relationship between the single nucleotide polymorphisms (SNPs) in the CAT enzyme and the potential risk of CD associated with high levels of oxidative stress. Additionally, we used protein and regulation analyses to determine what causes long-term CAT inhibition in peripheral white mononuclear cells (PWMCs) in both active and inactive CD. We first used a retrospective cohort of 598 patients with CD and 625 age-matched healthy controls (ENEIDA registry) for the genotype analysis. A second human cohort was used to study the functional and regulatory mechanisms of CAT in CD. We isolated PWMCs from CD patients at the onset of the disease (naïve CD patients). In the genotype-association SNP analysis, the CAT SNPs rs1001179, rs475043, and rs525938 showed a significant association with CD (p < 0.001). Smoking CD patients with the CAT SNP rs475043 A/G genotype had significantly more often penetrating disease (p = 0.009). The gene expression and protein levels of CAT were permanently reduced in the active and inactive CD patients. The inhibition of CAT activity in the PWMCs of the CD patients was related to a low concentration of CAT protein caused by the downregulation of CAT-gene transcription. Our study suggests an association between CAT SNPs and the risk of CD that may explain permanent CAT inhibition in CD patients together with low CAT gene and protein expression.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/metabolismo , Catalase/genética , Catalase/metabolismo , Estudos Retrospectivos , Antioxidantes/metabolismo , Genótipo , Inflamação/complicações , Variação Genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Estudos de Casos e Controles
17.
J Inflamm Res ; 15: 4217-4238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35915852

RESUMO

Introduction: Circulating extracellular histones acquire relevance as cytotoxic mediators in sepsis. Extracellular histones act as damage-associated molecular patterns (DAMPs), which induce oxidative stress and NLRP3 inflammasome activation. Inflammasome mediates pyroptosis, a programmed cell death mechanism that produces inflammation. Despite evidence for inflammasome activation in immune cells during sepsis, it was unknown whether extracellular histones can produce endothelial inflammasomes activation. Methods: We used human umbilical vein endothelial cells (HUVEC) to explore the activation of pyroptosis, endothelial function and inflammation by extracellular histones. We evaluated pyroptosis by flow cytometry, caspase-1 activity assay, and gene and protein expression analysis by RT-qPCR and Western blot, respectively. The upstream molecular responses involved in pyroptosis activation by extracellular histones were validated by means of using antioxidant glutathione ethyl ester and NLRP3 inflammasome inhibitors. Finally, using mass spectrometry, we measured circulating histones in blood from critically-ill patients and demonstrated that circulating histone levels correlated with the expression of pyroptosis-related cytokines, the release of endothelial adhesion factors and septic shock severity. Results: We found that extracellular histones mediate the activation of NLRP3 inflammasome and pyroptosis in endothelial cells by contributing to endothelial dysfunction and the dysregulation of the immune response mediated by endothelium. Likewise, we demonstrated how the hyperacetylation of extracellular histones or the use of antioxidants decreased pyroptosis. In addition, we showed that pyroptosis is a feasible process occurring in septic shock patients. Discussion: Circulating histone levels correlated with the expression of pro-inflammatory and pyroptosis-related cytokines, the release of endothelial adhesion factors and septic shock severity. We propose to block histone-mediated pyroptosis as a feasible therapeutic strategy in sepsis.

18.
Front Cell Dev Biol ; 10: 879814, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813211

RESUMO

Renal cell carcinoma is the most common type of kidney cancer, representing 90% of kidney cancer diagnoses, and the deadliest urological cancer. While the incidence and mortality rates by renal cell carcinoma are higher in men compared to women, in both sexes the clinical characteristics are the same, and usually unspecific, thereby hindering and delaying the diagnostic process and increasing the metastatic potential. Regarding treatment, surgical resection remains the main therapeutic strategy. However, even after radical nephrectomy, metastasis may still occur in some patients, with most metastatic renal cell carcinomas being resistant to chemotherapy and radiotherapy. Therefore, the identification of new biomarkers to help clinicians in the early detection, and treatment of renal cell carcinoma is essential. In this review, we describe circRNAs related to renal cell carcinoma processes reported to date and propose the use of some in therapeutic strategies for renal cell carcinoma treatment.

19.
Front Mol Neurosci ; 15: 912780, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769335

RESUMO

Computational techniques for analyzing biological images offer a great potential to enhance our knowledge of the biological processes underlying disorders of the nervous system. Friedreich's Ataxia (FRDA) is a rare progressive neurodegenerative inherited disorder caused by the low expression of frataxin, which is a small mitochondrial protein. In FRDA cells, the lack of frataxin promotes primarily mitochondrial dysfunction, an alteration of calcium (Ca2+) homeostasis and the destabilization of the actin cytoskeleton in the neurites and growth cones of sensory neurons. In this paper, a computational multilinear algebra approach was used to analyze the dynamics of the growth cone and its function in control and FRDA neurons. Computational approach, which includes principal component analysis and a multilinear algebra method, is used to quantify the dynamics of the growth cone (GC) morphology of sensory neurons from the dorsal root ganglia (DRG) of the YG8sR humanized murine model for FRDA. It was confirmed that the dynamics and patterns of turning were aberrant in the FRDA growth cones. In addition, our data suggest that other cellular processes dependent on functional GCs such as axonal regeneration might also be affected. Semiautomated computational approaches are presented to quantify differences in GC behaviors in neurodegenerative disease. In summary, the deficiency of frataxin has an adverse effect on the formation and, most importantly, the growth cones' function in adult DRG neurons. As a result, frataxin deficient DRG neurons might lose the intrinsic capability to grow and regenerate axons properly due to the dysfunctional GCs they build.

20.
Neonatology ; 119(5): 575-584, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35760056

RESUMO

INTRODUCTION: The oxygen load provided to preterm infants during postnatal stabilization caused significant modifications of DNA methylation in the preterm epigenome. We aimed to assess if there was an association between DNA methylation changes and neurodevelopmental outcomes. METHODS: Preterm infants were followed until 2 years after birth. Dried blood spots were processed, and DNA methylation was measured using the MassARRAY technology of Sequenom. We selected specific genes that corresponded to differentially methylated CpG sites that correlated with the oxygen load at 2 h after birth. Neurodevelopmental outcome was blindly assessed using Bayley-III scale. RESULTS: Of 32 eligible patients, we completed the methylation analysis in 19 patients and the neurodevelopmental evaluation in 22. Comparison of differential methylation analysis between time 0 (cord blood) and 2 h after birth showed 74 significant CpGs, out of which 14 correlated with the oxygen load received at birth. Out of these 14 genes, only TRAPPC9 showed statistically significant differences at 2 years of age between the infants who received >500 mL versus <500 mL O2/kg. Premature who received >500 mL O2/kg showed significantly lower motor composite scores. DISCUSSION/CONCLUSIONS: Premature who received higher oxygen load scored lower motor composite scores and showed a hypermethylation pattern of TRAPPC9 at 2 years of age. TRAPPC9 mutations are associated with neurodevelopmental delay and intellectual disability, so changes in the CpG methylation of this gene and its subsequent expression alteration can produce a similar phenotype. Further studies with a greater sample size are needed to confirm these findings.


Assuntos
Recém-Nascido Prematuro , Peptídeos e Proteínas de Sinalização Intercelular , Sistema Nervoso , Epigênese Genética , Epigenômica , Humanos , Recém-Nascido , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/metabolismo , Oxigênio , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...